اسفند ۰۶۱۳۹۲
 

تمامی x هایی که میوی X آنها
آلفا کات را روی مجموعه های فازی بزنیم ، یک مجموعه ای از اعداد می شود ، به طوری که میزان تعلقیت آنها ….( میرسیم به یک بازه در اعداد کلاسیک )

می خواهیم بدانیم آلفا کات ها چه خاصیت هایی دارند
بر روی اعداد فازی عملیات های جمع و تفریق را می خواهیم انجام دهیم

soft-computing-1

ابتدا بر روی باز ه ها عملیات جمع را انجام میدهیم

می توانیم مینی مم و ماکزیمم هم روی بازه ها تعریف کنیم
آلفا کات ها که یک بازه هستند پس روی آلفا کات ها می توانیم عملیات جمع و ضرب و تفریق و تقسیم و مینیمم و ماکزیمم تعریف کنیم

عملیات روی اعداد فازی :
جمع دو عدد فازی : اگر A , B فازی باشند A+B یک مجموعه فازی می شود که اجتماع اشتراک آنها می شود

soft-computing-2

 

انواع اعداد فازی :

۱- عدد فازی مثلثی : به صورت مثلث تعریف می شود A(a,b,c)

soft-computing-3-triangle

مثال جمع روی عدد فازی مثلثی :
soft-computing-4-triangle-sum

soft-computing-4-triangle-sum-example

جواب ضرب و تقسیم دو عدد فازی یک عدد فازی مثلثی نمی شود

soft-computing-4-triangle-multiple

به غیر از اینها هر عملیات دیگری بخواهیم انجام دهیم باید برای آنها آلفا کات بزنیم

———————

عدد فازی ذوزنقه ای

عدد فازی گوسی – زنگوله ای
———————

گروه بندی برای پروژه انجام دهید
گروه دو نفره
چند تا مقاله انتخاب کنید
هر گروهی ۳ تا مقاله باید داشته باشد
که با پروژه ای که در محیط کارتان هست تناسب داشته باشد

مثلا درخت تصمیم فازی

———————
تمرین ها را روی کاغذ بنویسید و در جلسه حضوری بیاورید 

اسفند ۰۳۱۳۹۲
 

بر قرار بودن عضویت وابسته به درجه عضویت است
گراف های لیبل دار کشیدیم
با توجه به این نوع گراف های نمایشی از روابط داشتیم

امروز در تکمیل بحث یک روش و شکل جدید از گراف های موارد کاربردی فازی ارائه می دهیم

گراف ها و فازی گراف ها :

گراف را با دو مجموعه نشان می دهیم (مجموعه گره ها – مجوعه یال ها )

رابطه ترتیب : بین هر دوگره اگر یال وجود داشته باشد و بین دوگره بعدی هم یال وجود داشته باشد رابطه ترتیب می گوییم

در حالت Link Based با توجه به یال های مختلف با توجه به مبدا و مقصد می توانیم مسیر تعریف کنیم

مثلا برای پیدا کردن کوتاهترن مسیر

در گراف فازی یک برداشت می کنیم
مسیر پذیر هستند اگر بین آن دو گره را مسدود نکرده باشند
مثال :
اگر در مسکن سرمایه گذاری کنم امکان دارد در پروژه تولید توپ فوتبال ورود پیدا نکنم
if – then Rule
در اینجا یک گراف فازی داریم که نود های آن گراف تصمیم ها و احتمال ها یال ها می شوند

یا مثلا یک گرافی می خواهیم که یال های آن ترافیک سبک یا ترافیک سنگین باشد.

نکته دیگر :
توسعه گراف های فازی ارتباط دو طرفه ای دارد که از رابطه ها در گراف های فازی استفاده کنیم

برعکس هم می توانیم متناظر کلمات بیانی ، بخشی از اطلاعات مساله را به عدد های مثلثی یا اعداد ذوزنقه ای تبدیل کنیم

روی یک گراف جای تک درجه عضویت وجود داشته باشد ، این جور مساله هم می تواند استفاده شود تا مثلا کوتاهترین مسیر را پیدا کنیم

در اینجا رابطه ها از دو مجموعه متفاوت گرفته ایم V1 , V2
می توانیم گراف ایجاد کنیم تا متناظر هر کدام درجه عضویت آنها را در گراف فازی دو بخشی داشته باشیم

همین را می توانیم در حالت پیوسته هم گسترش دهیم
image 1
می توانیم با رنگ میزان رنگ نمایش دهیم

مثلا حرف E را که روی پلاک خودرو وجود دارد کمی نا خوانا باشد

گراف ها حسنشان این است که با میزان رنگ می توانیم نشان دهیم

اگر درجه عضویت هایی بزرگتر از عددی کات بزنیم یک گراف مجزا خواهیم داشت

مفهوم فازی نت ورک :

هر گرافی که روی یال ها یا نود های آن برچسب داشته باشیم یک نتورک می گوییم
نتورک یک گراف جهت دار همبند است

در فازی نتورک ها با توجه به ارتباط آنها با هم و داشتن connectivity فازی pass خواهیم داشت

به عنوان نمونه مسیر به صورت زنجیره خواهیم داشت

درجه عضویت برعکس
در این حالت ها معمولا می توان با نگاه کردن به گراف می توان پی برد که خصوصیت آن چیست

نکته دیگر اینکه سیمتریک بودن ، یکتک زوح مرتب x , y پیدا کردیم که این زوج مرتب درجه عضویت x به y با درجه عضویت y به x متفاوت باشد

در اینجا بسیاری از مسایلی که حل می کنیم از نوع روابط گراف و رابطه هستند
از این جهت می توانیم روی گراف ها رابطه ها را پیدا کنیم

اگر x , y میو اکید بود برعکسش در گراف وجود نداشته باشد

در Transitive انچه که اهمیت دارد ، اگر زنجیره داشته باشیم ، بایستی از مینیمم درجه عضویت x به y و y بهz وجود داشته باشد.

به جهت جبری ماتریس رابطه R از R به توان ۲ بزرگتر است
برای R2 هم ماکزیمم مینیمم میو آی x , y هست

در بعضی از مسایل وقتی می خواهیم درباره اعتماد شبکه صحبت کنیم …
کافیست که ما هر Packet که از x به z می هواهد بفرستد از کانال مستقیم استفاده کنیم
در اینحال یال های موجود در شبکه مطمین ترن هستند به طول ۲
مفهوم بستار
R بی نهایت همه حالت های ممکن اتصال در نظر گرفته می شود

در یک شبکه همبند حداکثر مسیر ها به طول N هست
مسیر های یکطرفه با طول یالهای مختلف قابل محاسبه است

در روابط فازی مشابه روابط crisp رابطه هم نهشتی داریم
کلاس های هم ارزی
مثل میزان شباهت a , b به همدیگر
image 3

روابط مقایسه پذیری درفازی :

در Pre Order یک مجموعه .. روی R داریم که روی هر سه عضو x , y , z
Fuzzy Order باید سه خاصیت زیر را داشته باشد
Reflecxive , Antisymmetric , Transitive

 

 

بهمن ۲۹۱۳۹۲
 

مجموعه های فازی را تعریف کردیم

فازی با مجموعه ها ارتباط تنگاتنگی دارد
به ازای هر عضو از مجموعه های فازی ، میزان تعلقیت خاصی بین ۰ و ۱ در نظر گرفتیم

مجموعه های Crisp به عنوان زیر مجموعه ا ی از مجموعه های فازی هم قابل تعریف است

اجتماع ، اشتراک و متمم

برای مجموعه های فازی تعداد زیادی می توانیم اجتماع ، اشتراک و متمم تعریف کنیم

پایه ای ترین آنها اجتماع ، اشتراک و متمم استاندارد هستند.

متمم به عنوان مقدار عضویت A = مقدار ۱ منهای مقدار عضویت A

اجتماع استاندارد : …
اشتراک استاندارد : مینیمم …
ta-soft-computing1

اجتماع استاندارد کوچکترین اجتماعی هست که روی اعداد فازی تعریف می شود
اشتراک استاندارد بزرگترین اشتراکی است که ر روی اعداد فازی تعریف می شود

ta-soft-computing2

اجتماع دراستیک بزرگترین اجتماع هست
و اشتراک دراستیک کوچکترین اشتراک هست

اولین عملگر روی مجموعه های Crisp ضرب روی مجموعه ها بود

اصل گسترش :
حاصلضرب کارتزین برای مجموعه های معمولی
ta-soft-computing3
رابطه : هر زیر مجموعه حاصلضرب کارتزینی یک رابطه را تشکیل میدهد

هر رابطه عضوهایش :
عضو اول رابطه خاصی را رابطه دوم داریم

ta-soft-computing4

همکلاسی ها : مجموعه …
تعریف حاصلضرب کارتزینی :
اگر n تا مجموعه داشته باشیم و یک عضو به نام x
که میزان تعلقیت x به مجموعه را با مو نشان بدهیم
مینیمم درجه عضویت آن عضو به آن مجموعه ها است

ta-soft-computing5

مجموع میزان تعلقیت آنها الزاما ۱ نمی شود

ta-soft-computing6



ta-soft-computing7

یک رابطه به صورت یک به چند هست

ta-soft-computing8

در ریاضیات کریسپ اگر x با y رابطه دارد می توانیم با گراف جهت دار آنرا نمایش بدهیم
علاوه بر گراف جهت دار با ماتریس هم در ریاضیات Crisp می توانستیم نمایش بدهیم
تعداد عضو ها برابر تعداد یال ها هست
تعداد عضو ها در ماتریس برابر تعداد درایه های ۱ هست

رابطه ها یک زیر مجموعه ای از حاصضرب کارتزینی هستند
روی رابطه ها می توانیم اشتراک ، اجتماع ، متمم داشته باشیم
معکوس رابطه را با R اینورس نمایش می دهیم

عملگر ترکیب در رابطه ها :
ta-soft-computing9

طول مسیر برابر با تعداد یال ها است

اگر بین هر دو نود یک گراف بتوان یال پیدا کرد ، می گوییم قویا متصل
اگر بین دو نود به صورت یک طرفه وجود داشته باشد ، متصل ضعیف می گوییم .

هر رابطه ای می تواند با خودش ترکیب شود

رابطه R یعنی ارتباط بین دو نود
x , y با هم که ارتباط دارند
R2 مسیر دو تای
R بتوان ب نهایت : نشان دهنده وجود یا عدم وجود مسیر بین دو نود دلخواه در گراف است
ta-soft-computing10

اگر بخواهیم رابطه R بتوان بی نهایت را بدست بیاوریم باید R را n-1 بار با خودش ضرب کنیم

R بی نهایت نشاندهنده وجود یا عدم وجود مسیر بین تمام نود ها هست

رابطه ها خاصیت های مختلی دارند
Reflexive – بازتابی :
Symmetric – تقارنی :

–Transitive relation  تعدی : اگر عضوی با عضو دوم و عضو دوم با سوم و اول با سوم ارتباط داشته باشد

بستار بازتابی : کوچکترین رابطه ای هست مثل ‘R که شامل R هست و یک رابطه را کم دارد تا تازتابی شود
حداقل رابطه ای شامل R هست و شامل رابطه اولیه باشد

ta-soft-computing11

عناصر قطر اصلی که یک باشند فقط تقارنی بودن را نشان می دهند

رابطه تعدی روی گراف خیلی سخت است ، روی ماتریس هم سخت است

اگر x با y و y با z و x با z رابطه داشته باشد

اولین تمرین :
از روی یک ماتریس رابطه به چه صورت می توان به تعدی بودن آن پی برد
و از روی یک ماتریس رابطه مانند R به چه صورت می توان بستار تعدی آنرا ساخت

مهلت ارسال تمرین : سه شنبه هفته آینده
Autsoftsomputing92@gmail.com
( جواب تمرین در اسلاید ها هست )

روابط Equivalance – هم ارز هست اگر بازتابی و تقارنی و متعدی باشند

رابطه ها را می توانیم با هم ارزی کلاس بندی کنیم

با استفاده از رابطه های تلرانس عملیات

Pre order رابطه هایی بازتابی و تعدی هستند
اگر یک رابطه Pre order باشد و پاد تقارنی رابطه ترتیب -Order می شود

ta-soft-computing12

پس بستار پاد متقارن قابل تعریف نیست

آیا یک رابطه کوچکتر مساوی ترتیبی هست ؟
ta-soft-computing13
بله یک رابطه ترتیب هست
ولی رابطه کوچکتر ترتیبی نیست

———————————-
رابطه های فازی :
در رابطه های فازی می گوییم عضو ها تعلقی بین ۰ تا ۱ دارد

برای هر دامنه رابطه و برد تعریف می کنیم
دامنه R در رابطه فازی : تمامی عضو های اول را دارد و عضو دوم میزان تعلقیت آن عضو هست

در گراف : نود هایی که یال خروجی دارند در مخرج و در صورت هم ماکزیمم یال های خروجی از آن نود را می نویسیم

ta-soft-computing14

۱ و ۲ و ۳ و ۴ و ۵ و ۷ اعضای دامنه هست

ta-soft-computing15
برد دامنه : روی ستون های ماکزیمم می گیریم

ta-soft-computing16
ماکزیمم – مینیمم : ترکیب است
———————————-

آلفا کات : تمامی عضو هایی که میزان تعلقیت آنها بزرگتر مساوی الفا هست

 

آلفا کات یعنی تبدیل فازی به بازه
هر چه تعداد آلفا کات ها بیشتر باشد ، به نمونه فازی مشابه تر می شود ( دقیق تر می شود )

ta-soft-computing17
———————————-

موضوعات پروژه را از همین الان مشخص کنید
مثلا ایمنی به صورت فازی
مقاله های فازی را بخوانید
کتاب کمکی هم بخوانید

 

بهمن ۲۶۱۳۹۲
 

خلاصه درس مبانی محاسبات نرم – ۹۲/۱۱/۲۶

تعبیر مجموعه های فازی با استفاده از ماتریس های فازی

با استفاده از Crisp می توانیم مجموعه های فازی را به ماتریس های فازی تبدیل کنیم

می توانیم اثر را با یک ماتریس فازی نمایش بدهیم

با درجه عضویت

عملگر جمع و ضرب داخلی ماتریس ها
soft-computing-fuzzy-matrix

آنچه که مورد نیاز است ، روابط باید بتوانند تولید اجتماع بکنند
اجتماع دو مجموعه درجه عضویت ماکزیمم دو عضو می شود.

 

عملگر ماکزیمم روی تک تک درایه ها استفاده می کنیم
جمع : ماکزیمم گیری درایه ها
ضرب : ماکزیمم ( مینیمم درایه ها )
ماتریس دیگری که از ماکزیمم گیری روی تمام مجموعه ها در سطر i ام و ستون j ام

soft-computing-fuzzy-matrix2

در حالت اسکالر – بین صفر و یک – تمامی درجه عضویت ها در صفر و یک ضرب می شود

می توانیم برای بیش از یک رابطه هم نتیجه داشته باشیم
برای اجتماع M رابطه فازی درایه به درایه ماکزیمم گیری کنیم
برای اشتراک ، مینیمم گیری

معکوس : اگر در رابطه فازی x , y وجود داشته باشد ، درجه عضویت x , y با استفاده از این رابطه
قابلیت گسترش پیدا می کند همان درجه هست و یک نماد هست و اینورس نیست

soft-computing-fuzzy-matrix3

برای مجموعه های فازی متفاوت برای ریاضیات کلاسیک هست

رابطه ای که برای دو تا مجموعه بدست آوردیم برای بیش از دو مجموعه هم تعمیم می دهیم

….
توسعه تصویری :
اگر در رابطه r 0.2 , 0.3 هم وجود داشت می توانیم نتیجه بگیریم که در رابطه های قبلی وجود داشته
توسعه تصویری
به صورت بازگشتی تصویر می کند

به صورت درایه ای هم می توانیم نگاه کنیم
می توانیم تمام درجه عضویت های MR را پیدا کنیم و cut بزنیم

همین کار را در توسعه سیلندری می توانیم داشته باشیم

توسعه سیلندری :

توسعه سیلندری معمولا نرم افزار هایی مثل متلب انجام می دهند
یک بردار داریم می خواهیم توسعه بدهیم به یک ماتریس
آنچه را که به عنوان درجه عضویت داریم …

هنگامی که رشد می دهیم به سمت بالا ، درجه عضویت ها هم رشد می کنند.

توسعه سیلندری را در چند بعد هم می توانیم گسترش دهیم
ولی در توسعه تصویری به این راحتی ها نیست

توسعه
ابتدا تابعی را در نظر می گیریم ، یک به یک و کوشا

soft-computing-fuzzy-matrix4

اگر تابع پوشا باشد
اگر f(y) پوشا نباشد معکوسش هم ….

یک مثال از توسعه Extention
فرض کنیم مجموعه A و B را دارم که A غیر فازی و B فازی باشد
تک تک عنصر های B را ….

اصل توسیع را برای حالت حاصلضرب تعدادی از مجموعه بکار بردیم ، کافیست که برای تک مجموعه ها
کمترین درجه عضویت ها را …

مثال از Distance
soft-computing-fuzzy-5

جمع بندی :
یک رابطه خوبی بین ریاضیات کلاسیک و فاز وجود دارد
۱- مینیمم و ماکزیمم سازی
۲- راهکار خرد کردن رابطه فازی به آلفا کات ها
۳- توسعه داده فازی با ابعاد بزرگتر (Distance خیلی پر کاربرد است ) , Extention سیلندر ها برای مش ها

 




 

بهمن ۱۲۱۳۹۲
 

خلاصه جلسه دوم مبانی محاسبات نرم ۹۲/۱۱/۱۲ دکتر قطعی

 

interval computation

Fuzzy set
کار بر روی اعداد حقیقی است
می توانیم تمام مفاهیم ریاضی را بر اساس مفاهیم محجموعه ها بیان کنیم

فرض کنیم دو مجموعه A , X را تعریف می کنیم
X را مجموعه جهانی می نامیم

در ریاضی درباره عضویت یک عدد به یک مجموعه به صورت کاملا قطعی صحبت می کنیم ولی در حالت فازی درباره عضویت می توانیم درصدی را نسبت بدهیم

به جای مجموعه اعداد حقیقی ، یک مجموعه ای از اعداد فازی تعریف می کنیم
تابع عضویت در مجموعه فازی membership function می گوییم

در مجموعه فازی B-A ممکن است اعضایی باشد که در B و A هم وجود داشته باشد

تعاریف اجتماع و اشترک در مجموعه اعداد فازی

در مجموعه های Crisp قوانین دمورگان هم دارم
یکی از اهداف ما تفاوت بین مفاهیم فازی و غیرفازی هست

مفهوم محدب بودن :
محدب در مجموعه های غیر فازی : خط اتصال دهنده دو نقطه عضو یک مجموعه هم عضو مجموعه باشد

مجموعه فازی در بازه صفر و یک قرار می گیرند

نمایش مجموعه فازی
ساده ترین صورت : درجه عضویت را جلوی تابع می گذاریم
و همچنین با نماد مجموعه ای از زوج مرتب ها می توانیم قرار دهیم

برخی مواقع مجموعه مرجع به صورت پیوسته تعریف می شود
که هر چه xبه سمت صفر باشد ، درجه عضویت بیشتری را داریم
و هر چه از x فاصله می گیریم درصد تعلق داشتن به مجموعه کمتر می شود

در مجموعه فازی گسترش یافته در یک بعد ساده سازی می کنیم
Level-k مجموعه برش
یک مرحله عدم قطعیت کاهش پیدا می کند و به قطعیت بیشتری می رسیم

مجموعه فازی می تواند با توابع عضویت فازی هم گسترش پیدا کند

یکی از مفاهیم پر کاربرد Support هست
به قسمی که درجه عضویت در آنها بزرگتر از ۰ باشد

عنصری که بیشترین درجه عضویت را داشته باشد Height می گوییم
عدد فازی Normal عددی است که درجه عضویتش برابر ۱ باشد

یک تبدیل کاربردی آن است که بتواند مجموعه فازی را تقریبا به صورت بازه در بیاوریم که به این کار آلفا کات می گوییم

اگر مجموعه فازی a را برش دهیم به صورت الفا کات در می آید

این آلفا کات ها جمع و تفریق با آن ساده است
می توانیم مجموعه ای از اهدادی را که درجه مشخصی از عضویت را به دست آورده اند را Levelset می گوییم که خیلی هم کاربردی نیست

Convex fuzzy set
تعریف : اگر یک عضوی به صورت لاندا r تعریف شود
یک مجموعه محدب هست که
مینیمم دو تا درجه عضویت را می گیرم ..
هر دو عضو را که در نظر بگیریم از مینی مم درجه عضویت بزرگتر باشد.
شکل سمت چپ هر عضوی که بین r , s باشد از
شکل سمت راست نا محدب تعریف شده
که اصلا ورود پیدا نمی کنیم

اعداد فازی :
۱- اعدادی که محدب باشند
۲- درجه عضویت
۳- درجه عضویت دپار پرش نشده باشد (بصورت پیوسته باشد)

که در این درس کلا روی اعداد فازی کار می کنیم و به مجموعه های فازی خیلی کار نداریم

برای معدل سازی ( نگاشت ) اعداد فازی بر روی اعداد حقیقی از Scaler Cardinality می توانیم استفاده کنیم

تعداد اعضایی که در مجموعه الفا کات قرار دارد و درجه عضویت آنها را محاسبه می کنیم و با هم جمع کنیم خود آلفا به دست می آید

با این کار امکان افراز فازی وجود دارد

در مجموعه های فازی تعریف سختی است ( یکایک درجه عضویت تک تک عناصر دو مجموعه بایستی مساوی باشد )

زیر مجموعه محض می توانیم تعریف کنیم که هر

تفاوت مجموعه فازی با مجموعه حقیقی Complement
درجه عضویتی در دو مجموعه می تواند قرار بگیرد
در اجتماع از ماکزیمم سازی درجه عضویت استفاده می کنیم
اشتراک از مینیمم سازی درجه عضویت استفاده می کنیم
خلاصه جلسه دوم مبانی محاسبات نرم ۹۲/۱۱/۱۲ دکتر قطعی

با کلیک روی آگهی زیر مبلغ 400 ریال به حساب من واریز می گردد

با کلیک روی آگهی زیر مبلغ 1000 ریال به حساب من واریز می گردد