Jul 092013
 

Example: Robust Fitting

  1. Create a baseline sinusoidal signal:
    xdata = (0:0.1:2*pi)'; 
    y0 = sin(xdata);
  2. Add noise to the signal with non-constant variance:
    % Response-dependent Gaussian noise
    gnoise = y0.*randn(size(y0));
    
    % Salt-and-pepper noise
    spnoise = zeros(size(y0)); 
    p = randperm(length(y0));
    sppoints = p(1:round(length(p)/5));
    spnoise(sppoints) = 5*sign(y0(sppoints));
    
    ydata = y0 + gnoise + spnoise;
  3. Fit the noisy data with a baseline sinusoidal model:
    f = fittype('a*sin(b*x)'); 
    fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);
  4. Identify “outliers” as points at a distance greater than 1.5 standard deviations from the baseline model, and refit the data with the outliers excluded:
    fdata = feval(fit1,xdata); 
    I = abs(fdata - ydata) > 1.5*std(ydata); 
    outliers = excludedata(xdata,ydata,'indices',I);
    
    fit2 = fit(xdata,ydata,f,'StartPoint',[1 1],'Exclude',outliers);
  5. Compare the effect of excluding the outliers with the effect of giving them lower bisquare weight in a robust fit:
    fit3 = fit(xdata,ydata,f,'StartPoint',[1 1],'Robust','on');
  6. Plot the data, the outliers, and the results of the fits:
    plot(fit1,'r-',xdata,ydata,'k.',outliers,'m*') 
    hold on
    plot(fit2,'c--')
    plot(fit3,'b:')
    xlim([0 2*pi])

    fitplots

  7. Plot the residuals for the two fits considering outliers:
    figure 
    plot(fit2,xdata,ydata,'co','residuals') 
    hold on
    plot(fit3,xdata,ydata,'bx','residuals')resplot

 Leave a Reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

(required)

(required)


nine × = 27

با کلیک روی آگهی زیر مبلغ 400 ریال به حساب من واریز می گردد

با کلیک روی آگهی زیر مبلغ 1000 ریال به حساب من واریز می گردد