Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /var/www/vhosts/nadiran.com/vua.nadiran.com/wp-content/themes/suffusion/functions/media.php on line 669

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /var/www/vhosts/nadiran.com/vua.nadiran.com/wp-content/themes/suffusion/functions/media.php on line 674

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /var/www/vhosts/nadiran.com/vua.nadiran.com/wp-content/themes/suffusion/functions/media.php on line 687

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /var/www/vhosts/nadiran.com/vua.nadiran.com/wp-content/themes/suffusion/functions/media.php on line 692

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /var/www/vhosts/nadiran.com/vua.nadiran.com/wp-content/themes/suffusion/functions/media.php on line 697
دسته‌بندی نشده » باشگاه دانشجویی کارشناسی ارشد دانشگاه امیرکبیر
Warning: Declaration of Suffusion_MM_Walker::start_el(&$output, $item, $depth, $args) should be compatible with Walker_Nav_Menu::start_el(&$output, $item, $depth = 0, $args = NULL, $id = 0) in /var/www/vhosts/nadiran.com/vua.nadiran.com/wp-content/themes/suffusion/library/suffusion-walkers.php on line 0
Jul 092013
 

Example: Robust Fitting

  1. Create a baseline sinusoidal signal:
    xdata = (0:0.1:2*pi)'; 
    y0 = sin(xdata);
  2. Add noise to the signal with non-constant variance:
    % Response-dependent Gaussian noise
    gnoise = y0.*randn(size(y0));
    
    % Salt-and-pepper noise
    spnoise = zeros(size(y0)); 
    p = randperm(length(y0));
    sppoints = p(1:round(length(p)/5));
    spnoise(sppoints) = 5*sign(y0(sppoints));
    
    ydata = y0 + gnoise + spnoise;
  3. Fit the noisy data with a baseline sinusoidal model:
    f = fittype('a*sin(b*x)'); 
    fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);
  4. Identify “outliers” as points at a distance greater than 1.5 standard deviations from the baseline model, and refit the data with the outliers excluded:
    fdata = feval(fit1,xdata); 
    I = abs(fdata - ydata) > 1.5*std(ydata); 
    outliers = excludedata(xdata,ydata,'indices',I);
    
    fit2 = fit(xdata,ydata,f,'StartPoint',[1 1],'Exclude',outliers);
  5. Compare the effect of excluding the outliers with the effect of giving them lower bisquare weight in a robust fit:
    fit3 = fit(xdata,ydata,f,'StartPoint',[1 1],'Robust','on');
  6. Plot the data, the outliers, and the results of the fits:
    plot(fit1,'r-',xdata,ydata,'k.',outliers,'m*') 
    hold on
    plot(fit2,'c--')
    plot(fit3,'b:')
    xlim([0 2*pi])

    fitplots

  7. Plot the residuals for the two fits considering outliers:
    figure 
    plot(fit2,xdata,ydata,'co','residuals') 
    hold on
    plot(fit3,xdata,ydata,'bx','residuals')resplot
May 252013
 

یادگیری :
یک سری دیتا داریم و می خئاهیم یک سری اطلاعات از آن استخراج کنیم
مثل رگرسیون که میتواند چند متغیره باشد

مقادیر ثابت نامعلوم که قصد برآور آنرا داریم

تابعی داریم که بر اساس آن برآورد را انجام میدهیم
تابع هدف ، امید ریاضی یک تابع دیگری است
q=
هدف پیدا کردن مقدار ماکزیمم یا مینی مم تابع g(c) هست

 

Feb 032013
 

امروز ۱۵ بهمن ۹۱

باشگاه دانشجویان ارشد مجازی امیرکبیر رو به آدرس http://vua.nadiran.com ایجاد کردم

تا محیطی باشه برای تبادل اطلاعات دوستان و مشارکت گروهی

 

موفق و سربلند باشید

محمد نادی

با کلیک روی آگهی زیر مبلغ 400 ریال به حساب من واریز می گردد

با کلیک روی آگهی زیر مبلغ 1000 ریال به حساب من واریز می گردد